Neue Membran und neue Elektroden ermöglichen Durchbruch

Premiere der VW-Hochtemperatur-Brennstoffzelle

Bild: Volkswagen AG
Bild: Volkswagen AG

Im Detail hat die Volkswagen Forschung insbesondere Membran und Elektroden der Brennstoffzelle neu entwickelt. Membran, Elektroden, Zellen – dahinter verbirgt sich der ausgesprochen komplizierte Prozess, um aus chemischer Energie elektrische Energie zu gewinnen und damit den Elektromotor des zukünftigen Brennstoffzellen-Autos anzutreiben. Klammert man diesen komplizierten Prozess aus und betrachtet ausschließlich die neu entwickelten Teile „Membran" und „Elektroden", bietet das Volkswagen System im Vergleich zur Niedrigtemperatur-Brennstoffzelle folgende Vorteile:

Die Niedrigtemperatur-Brennstoffzelle wird bei einer Membran-Temperatur von rund 80 Grad Celsius betrieben. Steigt die Temperatur deutlich über diesen Wert, bricht die Brennstoffzellenleistung ein und die Zelle nimmt irreparablen Schaden. Deshalb besitzen Fahrzeug-Prototypen mit NT-Brennstoffzellen ein extrem aufwendiges und teures Kühlsystem. Allein die Kühlerfläche ist etwa dreimal so groß wie bei Dieselmotoren (!). Zudem müssen in einem NT-System die zugeführten Gase Wasserstoff und Luft permanent befeuchtet werden, da ansonsten ebenfalls die Energieproduktion einbricht und die Brennstoffzelle dauerhaft beschädigt wird. Auch diese Befeuchtung der in der Membran eingelagerten Wassermolekühle bringt unerwünschtes Zusatzgewicht und verschlingt Raum plus Geld. Die von Volkswagen entwickelte Hochtemperatur-Membran kann dagegen in Verbindung mit neu konzipierten Elektroden – ohne Leistungsverlust – bei Temperaturen von 120 Grad dauerhaft „gefahren" werden. Und zwar ohne Befeuchtung. Novum und Hintergrund: Bei der HT-BZ findet die Protonenleitung über Phosphorsäure statt. Diese Säure hat ähnlich gute elektrolytische Eigenschaften wie Wasser, weist allerdings einen höheren Siedepunkt auf. Deshalb reicht der HT-BZ ein deutlich einfacheres Kühlsystem und Wassermanagement aus. Und das reduziert das Gewicht und die Kosten signifikant. Darüber hinaus verringert sich der Raumbedarf des Brennstoffzellen-Systems um mehr als 30 Prozent.

Allerdings gab es auch hier ein bislang nicht gelöstes Problem: Es entstand, wie bei der Niedrigtemperatur-Membran, sogenanntes Produktwasser. Das Wasser drang in die Membran ein und wusch die Phosphorsäure aus. Es kam wiederum zur Unterbrechung des Stromflusses. An dieser Stelle scheiterten bislang alle Versuche, eine Hochtemperatur-Brennstoffzelle auf Basis bekannter Materialien für Fahrzeuge nutzbar zu machen. Die intensive Volkswagen Grundlagenforschung kam deshalb zu dem Ergebnis, dass neben einer neuen Membran spezielle Modifikationen der Elektroden nötig sind, die das Eindringen des Produktwassers in die Membranen verhindern können.

Die Lösung: Auf einer speziellen Siebdruckmaschine, wie sie im Bereich der Halbleitertechnik verwendet wird, beschichteten die Forscher im Volkswagen Technologiezentrum Isenbüttel mehrere Vlies-Elemente aus Kohlenstoff mit einer neuartigen Paste. Die so neu entstandenen Elektroden wurden schließlich in Brennstoffzellen-Stapeln (Stacks) umfangreichen Tests unterzogen. Eindeutiges Ergebnis: Das Produktwasser kann nicht mehr in die Membran eindringen und die Phosphorsäure verdünnen. Damit ist die HT-Technologie für den nächsten Forschungsschritt einsatzfähig. Der Blick in die Zukunft könnte dabei so aussehen:

Es entstehen immer leistungsstärkere Hochtemperatur-Brennstoffzellensysteme, die Schritt für Schritt perfektioniert werden und vorrausichtlich im Jahr 2010 die ersten Forschungsfahrzeuge antreiben. Um 2020 könnte es den ersten Volkswagen mit einem – und das ist entscheidend – alltagstauglichen und bezahlbaren Brennstoffzellen-Antrieb geben.

Generelle Funktion von Brennstoffzellen
Das zentrale Element jeder einzelnen Brennstoffzelle – von der mehrere zu einem Block (Stapel/Stack) zusammengefasst werden – ist eine protonenleitende Membran. Sie befindet sich jeweils zwischen der Anode und Kathode. Auf der Seite der Anode strömt Wasserstoff, auf der Seite der Kathode Luft in die Zelle. Viele dieser Zellen im Verbund erzeugen ausreichend Energie, um ein Fahrzeug anzutreiben. In jeder Zelle reagieren Wasserstoff und Sauerstoff und verbinden sich auf der Seite der Kathode zu Wasser. Die Brennstoffzelle setzt demnach die chemische Energie eines Oxidationsprozesses, einer sogenannten „kalten" Verbrennung, direkt in elektrische Energie um. Als „Abgas" entsteht nichts anderes als sauberer Wasserdampf.

Gespeist wird die Brennstoffzelle über den Wasserstofftank und eine externe Luftzufuhr. Ihre erzeugte elektrische Energie – die Leistung – gibt die Brennstoffzelle über einen Wandler und einen nachgeschalteten Bordnetzumrichter an einen oder auch mehrere Elektromotoren ab. Der Wagen wird somit nahezu lautlos, auf jeden Fall aber emissionslos angetrieben.

Chronologie der Volkswagen Brennstoffzellen-Forschung

Volkswagen ist seit einem Jahrzehnt im Bereich der Brennstoffzellen-Forschung aktiv. Dabei wurde auch das Potential der Niedrigtemperatur-Brennstoffzelle ausgiebig erforscht. Zu den Meilensteinen zählen in diesem Zusammenhang das sogenannte Capri-Projekt (1996 bis 2000 / Hybrid-Antrieb im Golf Variant mit 20-kW-Brennstoffzelle), der Bora HyMotion (2000 / Brennstoffzellen-Hybridfahrzeug mit 30 kW Brennstoffzellen-Dauerleistung), der PSI-Bora in Kooperation mit dem Paul Scherer Institut (2001 / Fahrtests über den 2.005 Meter hohen Simplon-Pass mit 40-kW-Brennstoffzelle) und der Touran HyMotion (seit 2004 / Integration einer Brennstoffzelle mit 65 kW Dauerleistung ohne Einschränkungen des Raumangebots / u.a. Einsätze in Kalifornien und China). Die Forschungsergebnisse zum Thema Niedrigtemperatur-Brennstoffzelle waren letztendlich dafür ausschlaggebend, konzentrierte Energie in die Entwicklung der alltagstauglicheren, kompakteren und günstigeren Hochtemperatur-Brennstoffzellen-Systeme zu investieren.

Zurück zur Übersicht
Neuere Nachrichten:Ältere Nachrichten:

Zufällige Bilder aus unserer Bildgalerie:

Fiat Idea - Cockpit
Fiat Idea - Cockpit
Citroen C6
Citroen C6
Aston Martin Vantage
Aston Martin Vantage
Hyundai Sonata - Instrumente, Tacho, Drehzahlmesser
Hyundai Sonata - Instrumente, Tacho, Drehzahlmesser
 
Tipps und Tricks
Wenn Sie das Licht über Nacht angelassen oder versucht haben, Ihr Fahrzeug zu starten und es nicht anspringt, haben Sie wahrscheinlich eine leere Batterie. Eine einfache Starthilfe kann alles sein, was ... mehr ...
 
Für alles perfekt ausgestattet
Motorradfahren ist etwas Besonderes. Viele Menschen lieben das Gefühl der Freiheit und den berauschenden Speed beim Fahren der Zweiräder. Manchmal kann es aber trotzdem auch vorkommen, dass man das Motorrad ... mehr ...
 
Für ein cooleres Aussehen
Die Farbe deines Autos zu verändern, kann eine aufregende Möglichkeit sein, ihm einen neuen Look zu geben. Eine Farbumgestaltung kann jedoch kostspielig sein, besonders wenn sie von Experten durchgeführt ... mehr ...
 
Neue Bildgalerien

VW ID.5 Update
Ein Update sowohl motorisch als auch von der Software und im Infotainment gibt es im Oktober 2023 für den VW ID.5

Skoda Kodiaq II
Der neue Skoda Kodiaq wurde gestern zum ersten Mal öffentlich präsentiert.

Audi Q8 Facelift
Ab Facelift wieder verfügbar: Bilder des runderneuerten Audi Q8.

Facelift für den Audi SQ8
Im September 2023 gab es ein Facelift für den Audi SQ8. Hier die Bilder.

Der neue VW Tiguan 3
Am 19. September gab es die unverhüllte Weltpremiere des VW Tiguan 3. Es ist schon die dritte Generation.

Der neue Renault Scenic E-Tech
Mit den letzten Tarn-Resten hatten wir den neuen Scenic E-Tech ja schon vorgestellt. Nun gibt es von Renault neue Bilder ohne Hüllen.

Der neue VW Passat 9 Variant
Am 31. August 2023 hat VW die letzten Tarnfolien am Passat 9 Variant entfernt und das Fahrzeug online der Öffentlichkeit vorgestellt.

Facelift Mercedes GLS
Bilder zum Facelift des Mercedes GLS

Facelift Mercedes GLS
Bilder zum Facelift des Mercedes GLS
 
© Dynamic Works Software & Technology GmbH • 2024